首页> 外文OA文献 >Closed-form equations for flange force and maximum deflection of box-beams of fiber reinforced polymer with partial shear interaction between webs and flanges
【2h】

Closed-form equations for flange force and maximum deflection of box-beams of fiber reinforced polymer with partial shear interaction between webs and flanges

机译:腹板和翼缘之间存在局部剪切相互作用的纤维增强聚合物箱形梁的翼缘力和最大挠度的封闭形式方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Presented in the paper is the formulation of a governing second-order differential equation for the moment distribution along the length of a beam having two interfaces with partial shear interaction where two flange and two web components join to form the box shaped section. For practical applications such a closed-section beam of Fiber Reinforced Polymer (FRP) can be assembled from individual pultruded profiles using mechanical fasteners. This assembly approach can be used to construct deeper section sizes than can be achieved with a single pultrusion, and which can be transported in\udflat-pack units. In developing the governing equation for flexural response account is made of the finite connection stiffness at the web/flange interfaces by applying conventional elastic beam theory. The differential equation for the partial interaction problem is solved to formulate closed form equations for the flange force and the maximum deflection of a simply supported beam under four-point bending. A numerical parametric study is presented to show changes in beam performance\udindicators with the degree of shear interaction between the upper and lower bounds of full- and non-interaction. Results from a series of load tests using a three-layered\udprototype FRP beam are shown to be in good agreement. The theoretical predictions for maximum deflection are however found to be directly linked to the appropriateness of the measured connection stiffness entered into the closed-form equation.
机译:本文提出的是控制力二阶微分方程的公式,该方程用于沿具有两个具有部分剪力相互作用的界面的梁的长度分布,其中两个翼缘和两个腹板构件相连以形成箱形截面。对于实际应用,可以使用机械紧固件从单个拉挤型材组装这样的纤维增强聚合物(FRP)封闭截面梁。与单次拉挤成型相比,这种组装方法可用于构造更深的截面尺寸,并且可以在\ dflat包装单元中运输。在开发挠曲响应控制方程时,通过应用常规的弹性梁理论,对腹板/法兰界面处的有限连接刚度进行了计算。解决了局部相互作用问题的微分方程,以针对四点弯曲下的简支梁的翼缘力和最大挠度建立闭式方程。进行了数值参数研究,以显示梁性能\指标的变化以及完全和非相互作用的上限和下限之间的剪切相互作用程度。使用三层\ udprototype FRP梁进行的一系列负载测试的结果显示出很好的一致性。然而,发现最大挠度的理论预测直接与输入到闭合形式方程中的测量连接刚度的适当性有关。

著录项

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号